Over the past few years, developing a broad, universal, and general-purpose computer vision system has become a hot topic. A powerful universal system would be capable of solving diverse vision tasks simultaneously without being restricted to a specific problem or a specific data domain, which is of great importance in practical real-world computer vision applications. This study pushes the direction forward by concentrating on the million-scale multi-domain universal object detection problem. The problem is not trivial due to its complicated nature in terms of cross-dataset category label duplication, label conflicts, and the hierarchical taxonomy handling. Moreover, what is the resource-efficient way to utilize emerging large pre-trained vision models for million-scale cross-dataset object detection remains an open challenge. This paper tries to address these challenges by introducing our practices in label handling, hierarchy-aware loss design and resource-efficient model training with a pre-trained large model. Our method is ranked second in the object detection track of Robust Vision Challenge 2022 (RVC 2022). We hope our detailed study would serve as an alternative practice paradigm for similar problems in the community. The code is available at https://github.com/linfeng93/Large-UniDet.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
With the growth of high-dimensional sparse data in web-scale recommender systems, the computational cost to learn high-order feature interaction in CTR prediction task largely increases, which limits the use of high-order interaction models in real industrial applications. Some recent knowledge distillation based methods transfer knowledge from complex teacher models to shallow student models for accelerating the online model inference. However, they suffer from the degradation of model accuracy in knowledge distillation process. It is challenging to balance the efficiency and effectiveness of the shallow student models. To address this problem, we propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation. The proposed lightweight student model DAGFM can learn arbitrary explicit feature interactions from teacher networks, which achieves approximately lossless performance and is proved by a dynamic programming algorithm. Besides, an improved general model KD-DAGFM+ is shown to be effective in distilling both explicit and implicit feature interactions from any complex teacher model. Extensive experiments are conducted on four real-world datasets, including a large-scale industrial dataset from WeChat platform with billions of feature dimensions. KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments, showing the superiority of DAGFM to deal with the industrial scale data in CTR prediction task. Our implementation code is available at: https://github.com/RUCAIBox/DAGFM.
translated by 谷歌翻译
卷积神经网络(CNN)通过深度体系结构获得了出色的性能。但是,这些CNN在复杂的场景下通常对图像超分辨率(SR)实现较差的鲁棒性。在本文中,我们通过利用不同类型的结构信息来获得高质量图像,提出了异质组SR CNN(HGSRCNN)。具体而言,HGSRCNN的每个异质组块(HGB)都采用含有对称组卷积块和互补的卷积块的异质体系结构,并以平行方式增强不同渠道的内部和外部关系,以促进富裕类型的较富裕类型的信息, 。为了防止出现获得的冗余功能,以串行方式具有信号增强功能的完善块旨在过滤无用的信息。为了防止原始信息的丢失,多级增强机制指导CNN获得对称架构,以促进HGSRCNN的表达能力。此外,开发了一种平行的向上采样机制来训练盲目的SR模型。广泛的实验表明,在定量和定性分析方面,提出的HGSRCNN获得了出色的SR性能。可以在https://github.com/hellloxiaotian/hgsrcnn上访问代码。
translated by 谷歌翻译
在过去的几年中,用于计算机视觉的深度学习技术的快速发展极大地促进了医学图像细分的性能(Mediseg)。但是,最近的梅赛格出版物通常集中于主要贡献的演示(例如,网络体系结构,培训策略和损失功能),同时不知不觉地忽略了一些边缘实施细节(也称为“技巧”),导致了潜在的问题,导致了潜在的问题。不公平的实验结果比较。在本文中,我们为不同的模型实施阶段(即,预培训模型,数据预处理,数据增强,模型实施,模型推断和结果后处理)收集了一系列Mediseg技巧,并在实验中探索了有效性这些技巧在一致的基线模型上。与仅关注分割模型的优点和限制分析的纸驱动调查相比,我们的工作提供了大量的可靠实验,并且在技术上更可操作。通过对代表性2D和3D医疗图像数据集的广泛实验结果,我们明确阐明了这些技巧的效果。此外,根据调查的技巧,我们还开源了一个强大的梅德西格存储库,其每个组件都具有插件的优势。我们认为,这项里程碑的工作不仅完成了对最先进的Mediseg方法的全面和互补的调查,而且还提供了解决未来医学图像处理挑战的实用指南,包括但不限于小型数据集学习,课程不平衡学习,多模式学习和领域适应。该代码已在以下网址发布:https://github.com/hust-linyi/mediseg
translated by 谷歌翻译
公平测试旨在减轻数据驱动的AI系统决策过程中的意外歧视。当AI模型为仅根据受保护属性(例如年龄和种族)区分的两个不同的个体做出不同的决定时,可能会发生个人歧视。这样的实例揭示了偏见的AI行为,被称为个人歧视实例(IDI)。在本文中,我们提出了一种选择初始种子以生成IDI进行公平测试的方法。先前的研究主要使用随机的初始种子来实现这一目标。但是,这个阶段至关重要,因为这些种子是后续IDIS生成的基础。我们称我们提出的种子选择方法I&D。它产生了大量的初始IDI,表现出极大的多样性,旨在提高公平测试的整体性能。我们的实证研究表明,I&D能够就四种最先进的种子生成方法产生更多的IDI,平均产生1.68倍的IDI。此外,我们比较I&D在训练机器学习模型中的使用,并发现与最先进的ART相比,使用I&D将剩余IDI的数量减少了29%,因此表明I&D有效地改善了模型公平性
translated by 谷歌翻译
在鸟眼中学习强大的表现(BEV),以进行感知任务,这是趋势和吸引行业和学术界的广泛关注。大多数自动驾驶算法的常规方法在正面或透视视图中执行检测,细分,跟踪等。随着传感器配置变得越来越复杂,从不同的传感器中集成了多源信息,并在统一视图中代表功能至关重要。 BEV感知继承了几个优势,因为代表BEV中的周围场景是直观和融合友好的。对于BEV中的代表对象,对于随后的模块,如计划和/或控制是最可取的。 BEV感知的核心问题在于(a)如何通过从透视视图到BEV来通过视图转换来重建丢失的3D信息; (b)如何在BEV网格中获取地面真理注释; (c)如何制定管道以合并来自不同来源和视图的特征; (d)如何适应和概括算法作为传感器配置在不同情况下各不相同。在这项调查中,我们回顾了有关BEV感知的最新工作,并对不同解决方案进行了深入的分析。此外,还描述了该行业的BEV方法的几种系统设计。此外,我们推出了一套完整的实用指南,以提高BEV感知任务的性能,包括相机,激光雷达和融合输入。最后,我们指出了该领域的未来研究指示。我们希望该报告能阐明社区,并鼓励对BEV感知的更多研究。我们保留一个活跃的存储库来收集最新的工作,并在https://github.com/openperceptionx/bevperception-survey-recipe上提供一包技巧的工具箱。
translated by 谷歌翻译
我们引入了一个有效的视频分割系统,用于利用异构计算的资源有限的边缘设备。具体而言,我们通过在已经轻巧的骨架上跨越规格的多个规范来设计网络模型,以市场可用的边缘推理引擎为目标。我们进一步分析和优化了CPU,GPU和NPU的系统中的异质数据流。从经验上讲,我们的方法已经很好地考虑了我们的实时AR系统,通过三倍的有效分辨率使精度更高,但在端到端延迟,较高的帧速率甚至更低的电力消耗下,在Edge平台上也可以使用。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
低光视频增强(LLVE)是许多应用程序,例如拍摄和自动驾驶,是一项重要但艰巨的任务。与单图像低光增强不同,大多数LLVE方法都利用相邻帧的时间信息来恢复颜色并删除目标框架的噪声。但是,这些算法基于多帧对齐和增强的框架,在遇到极端低光或快速运动时可能会产生多帧融合工件。在本文中,受到低潜伏期和高动态事件范围的启发,我们使用来自多个帧的合成事件来指导低光视频的增强和恢复。我们的方法包含三个阶段:1)事件合成和增强,2)事件和图像融合,以及3)低光增强。在此框架中,我们分别为第二阶段和第三阶段设计了两个新型模块(事件图像融合变换和事件引导的双分支)。广泛的实验表明,我们的方法在合成数据集和真实LLVE数据集上都优于现有的低光视频或单个图像增强方法。
translated by 谷歌翻译